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Spontaneous pattern formation in driven nonlinear lattices
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We demonstrate the spontaneous formation of spatial patterns in a damped, ac-driven cubic Klein-Gordon
lattice. These patterns are composed of arrays of intrinsic localized modes characteristic for nonlinear lattices.
We analyze the modulation instability leading to this spontaneous pattern formation. Our calculation of the
modulational instability is applicable in one- and two-dimensional lattices; however, in the analyses of the
emerging patterns we concentrate particularly on the two-dimensional case.

PACS numbgs): 63.20.Ry, 45.70.Qj, 63.20.Pw

Complex spatial patterns are often observed in systems
driven away from equilibrium{1]. Typically, the patterns

emerge when relatively simple systems are driven into UNivherey is the damping parametes,, the natural frequency
stable states that will deform dramatically in response tqs the oscillatorsh = + 1 the nonlinearity parameter, ard
small perturbations. As the patterns are arising from an inthe amplitude of the ac drive at frequeney In one dimen-
stability, the pattern-forming behavior is likely to be ex- sjon the nearest neighbor coupling 5,X,= X1~ 2X,
tremely sensitive to small changes in system parameters. Thex__, [5]. The amplitudeA, (and phase,) of the spatially
description of deterministic pattern-forming systems hasomogeneous solutiox,=A, cost+ &) of Eq. (1) can be
typically been accomplished in the form of partial differen- shown to satisfy, within the rotating wave approximation,
tial equations such as the Navier-Stokes equations for fluids
and reaction-diffusion equations for chemical systems. These
phenomena have primarily been studied in continuum sys-
tems such as hydrodynamical, optical, and chemical systems
and liquid crystals, although more recently pattern formationThe amplitudeA, of the response to a driving amplitueds
of a similar type has also been reported in periodically vi-shown for thesoft (\=1) potential in Fig. 1. Forw<wq
brated granular medig2]. (dashed ling three solutions are possible, while fer> wg
Complementing the development of the theoretical under¢solid line) a single solution is possible. A similar picture is
standing of pattern formation in continuum systems, the lovalid for thehard (A = — 1) potential except that the multiple
calized mode forming ability ofliscretelattices has also re- solutions then appear in the case> w,.
ceived significant recent attention. There is now a fairly
complete understanding of the existence and stability of lo- 1 ' ' ' : '
calized structuregoften referred to as intrinsic localized =
modes(ILM’s) or discrete breathefsn a variety of nonlin- -
ear lattices, undrivef3] as well as driverf4]. It is fair to -
claim that these collective patterns are well understood while P
the process of their creation and interaction remains rela- i ,
tively unexplored. b
In the present paper we study the pattern-forming abilitiesAo '
of a damped and periodically driven nonlinear lattice. Spe- \
cifically, we demonstrate how a driven nonline@ubic) osl
Klein-Gordon lattice forms a variety of patterns via modula- K
tional instabilities. We analyze the modulational instabilities /
and show how these relate to the length scale of the pattern g
that are formed. Normally, the spatial extdoharacteristic ,
length scalgof ILM's is directly related to the frequency of o . . . . ‘ .
the ILM’s [3]. However, in our case th@enerally different 0 0.2 0.4 0.6 0.8 1 1.2 1.4
length scale emerging from the instability may lead to a g
length-scale competition, the results of which we will ex-  FIG. 1. AmplitudeA, of response vs driving amplitudeof the

Xn+ YXnT 03X, =A X, + AX3+ € coswt, 1)
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plore. ac drive at frequencw = 1.2w, (solid line) and w =0.8w, (dashed
Model and stability of the homogeneous soluti&irst, line). Remaining parameters awg,=1.3, y=0.150,, and A=1
we study the Klein-Gordon lattice (soft potential.
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0.6 / As is well known[6] the Mathieu equations exhibit paramet-
/ ric resonances whegla=i, wherei=1,2,3 ... . Thewidth
04 # of the resonance regions depends on the @tio(see, e.g.,
] { [7]). In the framework of Eq(4) the extent of the primary
0-2 ! resonancea=1 can easily{7] be estimated to bea( 1)?
‘ B . . . . <q? However, in the presence of the dampinghe reso-
0 0.5 1 1.5 2 25 3 nance condition for Eq.3) becomes
wave number
2
FIG. 2. Instability region(shaded in the (e,k) plane. Dashed q2>7—+(a—1)2 (6)
. . . 2 L
line indicates the most unstable wave numberl. Parameters o)

corresponds to the solid line in Fig. 1.
with a and q defined in Eqs(5). Given\,y,w,wq, ande,
Analyzing the stability of the homogeneous solution with this translates into an instability band of certain wave num-
respect to spatial perturbations, we introduge-y+z, into  bersk.
Eqg. (1). Assuming periodic boundary conditions, we may Figure 2 shows this instability band as given by E®).
expandz, in its Fourier componentg,= X, expkn)é(t),  for parameters corresponding to the solid curve in Fig. 1.
where the mode amplitudg(t) is then governed by The shaded region is the band of wave numbers that are
3 unstable according to Ed6) and the dashed line indicates
- - 2 P the most unstable wave number, i&= 1. The effect of the
St Vet widk=5 Mgl 1+ cos2wt+280) J§ - (3) damping clearly is to pinch off the instability region at a
finite driving €>0. Similarly, using Eq.(6) instability re-
with 2= w3+ 4 sirf(k/2) denoting the linear dispersion re- gions can be determined for the solutions indicated by the

lation of the system. dashed curve in Fig. 1.

Finally, the transformationé,(t)= {,(wt+ dp)exd —(v/ We have verified the presence and location of the insta-
2)(wt+ )= (7)exd —(y/2)7] reduces Eq(3) to a stan-  bility band by direct simulations of Eq1) starting from the
dard Mathieu equation, initial condition x,,(t=0)= A, cos()+ 7,, where n,, repre-
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FIG. 3. Stability diagram
showing the stability boundaries
between the possible patterns in
the (e,w) plane. Parameters are
wp=0.75, A\=—1 (hard poten-
tial), y=0.050,. The four points
refer to the specific spatial struc-
tures shown in Fig. 4.
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FIG. 4. (Color) Spatial patterns corresponding to the four points marked in Fig. ¥%00.57: (a) straight stripes ¢=0.8w,), (b)
modulated stripesd=0.88w,), (¢) rhombi (w=1.0wy), (d) localized rhombi = 1.2w). X, , is plotted along the vertical axes.

sents a small|@y,| <A,) spatially random perturbation. This through a sequence of different patterfthombi, stripes,
initial condition injects energy into all wave numbers and inetc), composed of localized regions of high amplitude oscil-
the presence of an unstable region of wave numbers the dyations, before reaching a final configuration that may or may
namics will enhance the energy content in this region andiot result in a structure of definite symmetry.
thereby identify the unstable region. Due to the sensitive response to very small changes of the
The above analysis is easily extended to the case of twBarameters, determining stability regions for the different
spatial dimension$5], the only required change being that pa;terg gef[)m?_trlltis IS algj'ﬁl':‘?““ ‘t?’asla. Howe\?ar,_tmdthe casef of
. . . 2 2 . a hard potential X{=—1), Fig. 3 shows a limited area o
the dispersion relation now 'SwE_w°+4smz(kX/2) (€,w) sgace in which distin?:t spatial patterns emerge and
+4 sinz(ky/2), where the wave vector ls=(k, ,k,). The in-  remain stable.
stability in this case appears on an annulus in the wave vec- This diagram is constructed by following the full dynam-
tor plane, with a radius given bg=1 [see Eq.(5)] and a ics of the system for thousands of cycles. As our study con-
width determined by Eq(6). centrates on patterns arising from instabilities of the homo-
Pattern formationNumerical simulations allow us to not geneous solutions, we do not discuss possible hysteretic
only verify the predicted instability band, but also to follow behavior such as is sometimes observed in similar systems
the full nonlinear development and saturation initiated by thesee, e.g., Ref.2]).
instability. In particular, in regions of parameter space we Figure 4 shows representative examples of the spontane-
obtain the spontaneous formation of patterns of distinct spasusly emerging patterns corresponding to the points marked
tial geometry. Although we have observed this behavior inin Fig. 3. The patterns consist of localized regions of high
one as well as in two dimensions, in the present paper wamplitude coherent oscillatiord_M’s) residing on a back-
focus on the two-dimensional system, where the pattern forground that oscillates at the frequeneyof the ac drive. In
mation is very rich. all the considered cases we have observed the natural result
Although the dynamics show different features accordinghat patterns are energetically sustained only when the ILM,
to the specific region of parameter space, it is possible t@, ,,, and driving, w, frequencies are commensurate, i.e.,
trace a typical behavior as follows. Initializing the system inw,, y =nw, wheren is an integer. For the patterns displayed
the spatially homogeneous state described above with @& Fig. 4, n=2. Further, the motion of the ILM’s is out of
small amount of randomness added, the instability sets iphase, i.e., at the points in time where the background oscil-
after a certain number of cycles of the ac drive, depending oration reaches its maximal excursion the ILM’s obtain their
the strength of the parametric resonance, i.e., on the value @finimal amplitude, such that at these points the state is com-
Ja=1,2,3.... Thereafter the system usually evolves pletely homogeneous.
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FIG. 5. (Color) Snapshot of spontaneously formed pattern of ILM’s. The red line represents a one-dimensional cut of the pattern array,
whose dynamics we have analyzed in detsdle Fig. 6.

At a fixed driving €, for increasing values of the fre- vectors(see Fig. 2 and related discussi@iows continuous
guencyw, as in Fig. 4, we can observe the following behav-accommodation of this constraint except for the discontinu-
ior. Due to the presence of the damping at sufficiently — ous changes in length scales occurring when it is energeti-
small w the spatially homogeneous solution is stable againstally favorable for the system to addr subtract an addi-
all possible spatial modulations such that titegt state is tional stripe(or row of ILM’s).
sustained. However, for values near pdiatthe system be- For the soft potentialX=1) variation of the amplitude
comes unstable with respect to certain spatial modulationand the frequency of the ac drive is particularly problem-
and spatial patterns in the form of large stripes eméFgg.  atic, as the dynamics in this case can lead to the development
4(a)]. On increasing the frequency, these stripes becomef catastrophic instabilities as one or several oscillators over-
thinner and denser and begin to show an increasingly cleareome the finite barrier in the quartic potential. In all the cases
modulation[Fig. 4(b)]. The characteristic length scale of we have been able to simulate, the early stage time evolution
these patterns is set by the size of the unst&bleector ~Of the system is characterized by the formation of ILM’s
according to the above analysis. The nonlinear character of
the system results in a transition toward a more isotropic
geometry (rhombig as the driving frequency is increased
further [Fig. 4(c)]. As in the case of the stripes, stronger g5 . '
localization of the ILM’s arranged in the rhombic pattern '
[Fig. 4(d)] is observed for even larger driving frequencies. o414 i //[
The angle between the sides of the rhombus unit cell varies
but for the hard potential it is always close#d2. For values £
of e larger than those displayed in Fig. 3, the final mesos-
copic patterns of the system dynamics are spatially disor-<<—o.14.-
dered much like the phenomena observed in granular medii
[2]. It is important to realize that the length of the unstable -o0.2..
wave vector determines the length scales of the final patterns
while the symmetry of the patterns is determined by the non-
linear character of the system.

As a result of the periodic boundary conditions, the length
scale of the emerging patterns must be commensurate witl:
the system size. However, we have observed that the exis- Fig. 6. ILM dynamics monitored along the direction indicated

tence of a bandvariable in length and anglef unstablek by the line in Fig. 5.
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regularly arranged in a square pattern. This spatial configudimensions. We have further demonstrated numerically how
ration, which is sustained for up to hundreds of cycles, seemthese instabilities lead to a variety of mesoscopic patterns of
always to suffer from a weak instability and eventually de-intrinsic local modes. In the case of a hard potential we char-
forms into a rhombic pattern, as shown in Fig. 5. Contrastingacterized the patterns in a stability diagram, and in the case
with the case of the hard potenti?l=1), here in the soft of a soft potential we showed that the dynamics always result
potential the angle between the sides of the rhombus unit cejh 3 rhombic pattern with an angle close ter/3. These
is always close to #/3 (so almost hexagonl rhombic patterns were never observed in the case of the hard
We now analyze this pattern, more closely. The pattermsienial. This difference in the shapes of the patterns in the
shown in Fllg. 5hC°an_'5tS of ILM shsponta}neously Or_gﬁn'fedhard and soft cases can be understood by exploiting the anal-
th a dregt:jar r fom 'ﬁ pattern. tT e ”‘Nll S ar.ﬁ ?’pz::ilihy 0 ogy between the changes in the steady states of a dissipative
calized and perlorm harmonic temporal oscriia 'c.( e systems and phase transitions in systems at thermodynamic
frequencyw of the ac drive angg]are therefore objects that equilibrium (see, e.g., Ref8]). In terms of this analogy, the
are, in isolation, well describe8] in the literature. A par- e S . T
ticular feature of these ILM’s is that they reside on a back-aPpearance of spatially periodic structures n a nonequilib-
ground that oscillates at the same frequency. To expose t gm system can be connected to a perturbation of the trans-
ational symmetry of thermodynamic states in equilibrium. A

dynamics of the ILM’s more closely, we show in Fig. 6 a _ ; . .
time sequence along a one-dimensional cut of the twoStudy based on this philosophy was pursued in FBifwith

dimensional systentthe cut is indicated by the line in Fig. the result that the angle defining the rhombic patterns is
5). It should be noted that in Fig. 6 we have removed thediven by the coefficient of the cubic term in the system,
oscillations of the background in order to clearly expose thevhich is indeed our observation here. From the present
ILM dynamics. analysis it appears that experimental studies of the pattern-
Although we have focused on the ILM dynamics in the forming abilities of discrete systems present an excellent op-
case of a soft potential, the features are analogous in the capertunity to study ILM’s and their mutual interactions and
of the hard potential and only the symmetry of the patterns isnesoscopic patterning. For example, optical systghand
different. spin system$10] appear good candidates for such studies.

In summary, we have studied the modulational instability Research at Los Alamos National Laboratory was per-
in a damped and ac-driven cubic nonlinear Klein-Gordon, y P

lattice. The analysis applies to one as well as two Spaltiaflormed under the auspices of the U.S. Department of Energy.
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