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Spontaneous pattern formation in driven nonlinear lattices
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We demonstrate the spontaneous formation of spatial patterns in a damped, ac-driven cubic Klein-Gordon
lattice. These patterns are composed of arrays of intrinsic localized modes characteristic for nonlinear lattices.
We analyze the modulation instability leading to this spontaneous pattern formation. Our calculation of the
modulational instability is applicable in one- and two-dimensional lattices; however, in the analyses of the
emerging patterns we concentrate particularly on the two-dimensional case.

PACS number~s!: 63.20.Ry, 45.70.Qj, 63.20.Pw
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Complex spatial patterns are often observed in syst
driven away from equilibrium@1#. Typically, the patterns
emerge when relatively simple systems are driven into
stable states that will deform dramatically in response
small perturbations. As the patterns are arising from an
stability, the pattern-forming behavior is likely to be e
tremely sensitive to small changes in system parameters.
description of deterministic pattern-forming systems h
typically been accomplished in the form of partial differe
tial equations such as the Navier-Stokes equations for fl
and reaction-diffusion equations for chemical systems. Th
phenomena have primarily been studied in continuum s
tems such as hydrodynamical, optical, and chemical syst
and liquid crystals, although more recently pattern format
of a similar type has also been reported in periodically
brated granular media@2#.

Complementing the development of the theoretical und
standing of pattern formation in continuum systems, the
calized mode forming ability ofdiscretelattices has also re
ceived significant recent attention. There is now a fai
complete understanding of the existence and stability of
calized structures@often referred to as intrinsic localize
modes~ILM’s ! or discrete breathers# in a variety of nonlin-
ear lattices, undriven@3# as well as driven@4#. It is fair to
claim that these collective patterns are well understood w
the process of their creation and interaction remains r
tively unexplored.

In the present paper we study the pattern-forming abili
of a damped and periodically driven nonlinear lattice. S
cifically, we demonstrate how a driven nonlinear~cubic!
Klein-Gordon lattice forms a variety of patterns via modu
tional instabilities. We analyze the modulational instabiliti
and show how these relate to the length scale of the patt
that are formed. Normally, the spatial extent~characteristic
length scale! of ILM’s is directly related to the frequency o
the ILM’s @3#. However, in our case the~generally different!
length scale emerging from the instability may lead to
length-scale competition, the results of which we will e
plore.

Model and stability of the homogeneous solution.First,
we study the Klein-Gordon lattice
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ẍn1g ẋn1v0
2xn5Dnxn1lxn

31e cosvt, ~1!

whereg is the damping parameter,v0 the natural frequency
of the oscillators,l561 the nonlinearity parameter, ande
the amplitude of the ac drive at frequencyv. In one dimen-
sion the nearest neighbor coupling isDnxn5xn1122xn
1xn21 @5#. The amplitudeA0 ~and phased0) of the spatially
homogeneous solutionxn5A0 cos(vt1d0) of Eq. ~1! can be
shown to satisfy, within the rotating wave approximation,

A0
2Fg2v21S v22v0

21
3

4
lA0

2D 2G5e2. ~2!

The amplitudeA0 of the response to a driving amplitudee is
shown for thesoft (l51) potential in Fig. 1. Forv,v0
~dashed line! three solutions are possible, while forv.v0
~solid line! a single solution is possible. A similar picture
valid for thehard (l521) potential except that the multipl
solutions then appear in the casev.v0.

FIG. 1. AmplitudeA0 of response vs driving amplitudee of the
ac drive at frequencyv51.2v0 ~solid line! andv50.8v0 ~dashed
line!. Remaining parameters arev051.3, g50.15v0, and l51
~soft potential!.
7353 ©2000 The American Physical Society
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initial condition xn(t50)5A0 cos(d0)1hn , wherehn repre-
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Analyzing the stability of the homogeneous solution w
respect to spatial perturbations, we introducexn5y1zn into
Eq. ~1!. Assuming periodic boundary conditions, we m
expandzn in its Fourier componentszn5(k exp(ikn)jk(t),
where the mode amplitudejk(t) is then governed by

j̈k1gj̇k1vk
2jk5

3

2
lA0

2@11cos~2vt12d0!#jk ~3!

with vk
25v0

214 sin2(k/2) denoting the linear dispersion re
lation of the system.

Finally, the transformationjk(t)5zk(vt1d0)exp@2(g/
2)(vt1d)#[zk(t)exp@2(g/2)t# reduces Eq.~3! to a stan-
dard Mathieu equation,

FIG. 2. Instability region~shaded! in the (e,k) plane. Dashed
line indicates the most unstable wave numbera51. Parameters
corresponds to the solid line in Fig. 1.
d2zk

dt2
1azk22q cos~2t!zk50, ~4!

where

a5
1

4v2
~4vk

226lA0
22g2! and q5

3lA0
2

4v2
. ~5!

As is well known@6# the Mathieu equations exhibit parame
ric resonances whenAa. i , wherei 51,2,3, . . . . Thewidth
of the resonance regions depends on the ratioq/a ~see, e.g.,
@7#!. In the framework of Eq.~4! the extent of the primary
resonancea.1 can easily@7# be estimated to be (a21)2

,q2. However, in the presence of the dampingg the reso-
nance condition for Eq.~3! becomes

q2.
g2

v2
1~a21!2, ~6!

with a and q defined in Eqs.~5!. Given l,g,v,v0, and e,
this translates into an instability band of certain wave nu
bersk.

Figure 2 shows this instability band as given by Eq.~6!
for parameters corresponding to the solid curve in Fig.
The shaded region is the band of wave numbers that
unstable according to Eq.~6! and the dashed line indicate
the most unstable wave number, i.e.,a51. The effect of the
damping clearly is to pinch off the instability region at
finite driving e.0. Similarly, using Eq.~6! instability re-
gions can be determined for the solutions indicated by
dashed curve in Fig. 1.

We have verified the presence and location of the ins
bility band by direct simulations of Eq.~1! starting from the
s
in
e

-

FIG. 3. Stability diagram
showing the stability boundarie
between the possible patterns
the (e,v) plane. Parameters ar
v050.75, l521 ~hard poten-
tial!, g50.05v0. The four points
refer to the specific spatial struc
tures shown in Fig. 4.
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FIG. 4. ~Color! Spatial patterns corresponding to the four points marked in Fig. 3 fore50.57: ~a! straight stripes (v50.8v0), ~b!
modulated stripes (v50.88v0), ~c! rhombi (v51.0v0), ~d! localized rhombi (v51.2v0). xn,m is plotted along the vertical axes.
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sents a small (uhnu!A0) spatially random perturbation. Thi
initial condition injects energy into all wave numbers and
the presence of an unstable region of wave numbers the
namics will enhance the energy content in this region a
thereby identify the unstable region.

The above analysis is easily extended to the case of
spatial dimensions@5#, the only required change being th
the dispersion relation now isvkW

2
5v0

214 sin2(kx/2)

14 sin2(ky/2), where the wave vector iskW5(kx ,ky). The in-
stability in this case appears on an annulus in the wave
tor plane, with a radius given bya51 @see Eq.~5!# and a
width determined by Eq.~6!.

Pattern formation.Numerical simulations allow us to no
only verify the predicted instability band, but also to follo
the full nonlinear development and saturation initiated by
instability. In particular, in regions of parameter space
obtain the spontaneous formation of patterns of distinct s
tial geometry. Although we have observed this behavior
one as well as in two dimensions, in the present paper
focus on the two-dimensional system, where the pattern
mation is very rich.

Although the dynamics show different features accord
to the specific region of parameter space, it is possible
trace a typical behavior as follows. Initializing the system
the spatially homogeneous state described above wit
small amount of randomness added, the instability set
after a certain number of cycles of the ac drive, depending
the strength of the parametric resonance, i.e., on the valu
Aa.1,2,3, . . . . Thereafter the system usually evolv
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through a sequence of different patterns~rhombi, stripes,
etc.!, composed of localized regions of high amplitude osc
lations, before reaching a final configuration that may or m
not result in a structure of definite symmetry.

Due to the sensitive response to very small changes of
parameters, determining stability regions for the differe
pattern geometries is a difficult task. However, in the case
a hard potential (l521), Fig. 3 shows a limited area o
(e,v) space in which distinct spatial patterns emerge a
remain stable.

This diagram is constructed by following the full dynam
ics of the system for thousands of cycles. As our study c
centrates on patterns arising from instabilities of the hom
geneous solutions, we do not discuss possible hyste
behavior such as is sometimes observed in similar syst
~see, e.g., Ref.@2#!.

Figure 4 shows representative examples of the spont
ously emerging patterns corresponding to the points mar
in Fig. 3. The patterns consist of localized regions of hi
amplitude coherent oscillations~ILM’s ! residing on a back-
ground that oscillates at the frequencyv of the ac drive. In
all the considered cases we have observed the natural r
that patterns are energetically sustained only when the IL
v ILM , and driving,v, frequencies are commensurate, i.
v ILM 5nv, wheren is an integer. For the patterns displaye
in Fig. 4, n52. Further, the motion of the ILM’s is out o
phase, i.e., at the points in time where the background os
lation reaches its maximal excursion the ILM’s obtain th
minimal amplitude, such that at these points the state is c
pletely homogeneous.
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FIG. 5. ~Color! Snapshot of spontaneously formed pattern of ILM’s. The red line represents a one-dimensional cut of the patte
whose dynamics we have analyzed in detail~see Fig. 6!.
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At a fixed driving e, for increasing values of the fre
quencyv, as in Fig. 4, we can observe the following beha
ior. Due to the presence of the dampingg, at sufficiently
small v the spatially homogeneous solution is stable aga
all possible spatial modulations such that theflat state is
sustained. However, for values near point~a! the system be-
comes unstable with respect to certain spatial modulat
and spatial patterns in the form of large stripes emerge@Fig.
4~a!#. On increasing the frequency, these stripes beco
thinner and denser and begin to show an increasingly cle
modulation @Fig. 4~b!#. The characteristic length scale o
these patterns is set by the size of the unstablekW vector
according to the above analysis. The nonlinear characte
the system results in a transition toward a more isotro
geometry~rhombic! as the driving frequency is increase
further @Fig. 4~c!#. As in the case of the stripes, strong
localization of the ILM’s arranged in the rhombic patte
@Fig. 4~d!# is observed for even larger driving frequencie
The angle between the sides of the rhombus unit cell va
but for the hard potential it is always close top/2. For values
of e larger than those displayed in Fig. 3, the final mes
copic patterns of the system dynamics are spatially dis
dered much like the phenomena observed in granular m
@2#. It is important to realize that the length of the unstab
wave vector determines the length scales of the final patte
while the symmetry of the patterns is determined by the n
linear character of the system.

As a result of the periodic boundary conditions, the len
scale of the emerging patterns must be commensurate
the system size. However, we have observed that the e
tence of a band~variable in length and angle! of unstablekW
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vectors~see Fig. 2 and related discussion! allows continuous
accommodation of this constraint except for the disconti
ous changes in length scales occurring when it is energ
cally favorable for the system to add~or subtract! an addi-
tional stripe~or row of ILM’s!.

For the soft potential (l51) variation of the amplitudee
and the frequencyv of the ac drive is particularly problem
atic, as the dynamics in this case can lead to the developm
of catastrophic instabilities as one or several oscillators ov
come the finite barrier in the quartic potential. In all the cas
we have been able to simulate, the early stage time evolu
of the system is characterized by the formation of ILM

FIG. 6. ILM dynamics monitored along the direction indicate
by the line in Fig. 5.
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regularly arranged in a square pattern. This spatial confi
ration, which is sustained for up to hundreds of cycles, se
always to suffer from a weak instability and eventually d
forms into a rhombic pattern, as shown in Fig. 5. Contrast
with the case of the hard potential~l51!, here in the soft
potential the angle between the sides of the rhombus unit
is always close to 2p/3 ~so almost hexagonal!.

We now analyze this pattern more closely. The patt
shown in Fig. 5 consists of ILM’s spontaneously organiz
into a regular rhombic pattern. The ILM’s are spatially l
calized and perform harmonic temporal oscillations~at the
frequencyv of the ac drive! and are therefore objects th
are, in isolation, well described@3# in the literature. A par-
ticular feature of these ILM’s is that they reside on a ba
ground that oscillates at the same frequency. To expose
dynamics of the ILM’s more closely, we show in Fig. 6
time sequence along a one-dimensional cut of the t
dimensional system~the cut is indicated by the line in Fig
5!. It should be noted that in Fig. 6 we have removed
oscillations of the background in order to clearly expose
ILM dynamics.

Although we have focused on the ILM dynamics in t
case of a soft potential, the features are analogous in the
of the hard potential and only the symmetry of the pattern
different.

In summary, we have studied the modulational instabi
in a damped and ac-driven cubic nonlinear Klein-Gord
lattice. The analysis applies to one as well as two spa
ett
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dimensions. We have further demonstrated numerically h
these instabilities lead to a variety of mesoscopic pattern
intrinsic local modes. In the case of a hard potential we ch
acterized the patterns in a stability diagram, and in the c
of a soft potential we showed that the dynamics always re
in a rhombic pattern with an angle close to 2p/3. These
rhombic patterns were never observed in the case of the
potential. This difference in the shapes of the patterns in
hard and soft cases can be understood by exploiting the a
ogy between the changes in the steady states of a dissip
systems and phase transitions in systems at thermodyn
equilibrium ~see, e.g., Ref.@8#!. In terms of this analogy, the
appearance of spatially periodic structures in a nonequ
rium system can be connected to a perturbation of the tra
lational symmetry of thermodynamic states in equilibrium.
study based on this philosophy was pursued in Ref.@8# with
the result that the angle defining the rhombic patterns
given by the coefficient of the cubic term in the syste
which is indeed our observation here. From the pres
analysis it appears that experimental studies of the patt
forming abilities of discrete systems present an excellent
portunity to study ILM’s and their mutual interactions an
mesoscopic patterning. For example, optical systems@9# and
spin systems@10# appear good candidates for such studie
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